If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-441=0
a = 4; b = 0; c = -441;
Δ = b2-4ac
Δ = 02-4·4·(-441)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*4}=\frac{-84}{8} =-10+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*4}=\frac{84}{8} =10+1/2 $
| -(6x+12)=6(x+2) | | 7-((2x+9)+(6x-3))=2x-9 | | 11+3x-1=7x+2 | | 1/12y=3/8 | | (3x+8)(x+6)=0 | | 2(x-3)-1=15 | | (2x-6)-1=15 | | 8(20-2x)+5=37 | | 14x+14=5(2x+4)+4x-6 | | 2(7−x)=10−4(x−5) | | 5(7x+6)-10=440 | | 3(4x-3)2-7=x | | 5x3=3x+33 | | -33=3(-3n-2) | | 5(6x-5)=11(2x+5) | | 12t^2-6t=0 | | x(2x)=392 | | x+4/4=3/2+x-8/9 | | 4(x-3)-1=x+11 | | 40t=50(t-1) | | x+13+7=2x+32 | | 10x*x=39 | | 30(3+8y-3(y+3)=-5(4y-6)-(9(y-1)-21y+21 | | -1(x+1)=2(3x-1) | | 30(3+8y-3(y+3)=-5(4y-6)-(9(y-1)-21+21 | | x+13+7=32 | | 1x^2-10x-4500=0 | | 45=1695-25(75-3x) | | 8x2-10x=0 | | 3y-7=14y+81 | | 3.4^x+6=0 | | 4(2x-7)-2=6(x-5)+10 |